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Abstract A mesh-free minimum length method (MLM) has
been proposed for 2-D solids and heat conduction problems.
In this method, both polynomials as well as modified radial
basis functions (RBFs) are used to construct shape func-
tions for arbitrarily distributed nodes based on minimum
length procedure, which possess Kronecker delta property.
The shape functions are then used to formulate a mesh-free
method based on weak-form formulation. Both Gauss inte-
gration (GI) and stabilized nodal integration (NI) are em-
ployed to numerically evaluate Galerkin weak form. The
numerical examples show that the MLM achieves better accu-
racy than the 4-node finite elements especially for problems
with steep gradients. The method is easy to implement and
works well for irregularly distributed nodes. Some numerical
implementation issues for MLM are also discussed in detail.

Keywords Mesh-free method · Meshless method ·
Minimum length method · Radial basis function (RBF) ·
Interpolation function

1 Introduction

Mesh-free methods have achieved remarkable progress in re-
cent years to avoid the problems related to the creation and
application of predefined meshes in the traditional numerical
methods, such as the finite element method (FEM), the fi-
nite difference method (FDM). In general mesh-free methods
developed so far can be categorized into three main groups.
The first group includes mesh-free methods based on strong-
form equations, in which discretization is formed directly
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from governing differential equations, such as the smooth
particle hydrodynamics (SPH) method [6,13], the general fi-
nite difference method [9] and other mesh-free collocation
methods. The second group covers the mesh-free methods
based on weak-form formulation, such as element-free Galer-
kin (EFG) method [2], reproducing kernel particle meth-
ods (RKPM) [15], meshless local Petrov-Galerkin (MLPG)
method [1], radial point interpolation method (RPIM) [10,
17] and other boundary-type mesh-free methods. The third
category involves mesh-free methods combining both weak-
and strong-form formulations, such as the newly developed
mesh-free weak-strong form method [11,14].

One attractive feature of strong-form methods is the high
computational efficiency as no numerical integration is re-
quired. However, straightforward imposition of Neumann
boundary condition often leads to unstable results. By com-
parison, mesh-free weak-form methods can usually achieve
higher accuracy than strong-form methods especially in deal-
ing with problems in solids and structural mechanics. In addi-
tion, they can treat Neumann boundary condition more eas-
ily and the results are more stable. Hence weak-form method
is considered in this work. One of the most important is-
sues in mesh-free methods is the construction of mesh-free
shape functions. The developed shape functions should have
some primary merits, such as desirable accuracy, very easy to
implement, valid and stable for arbitrary nodal distribution.
There are two widely used methods: moving least-squares
(MLS) method and radial point interpolation method (RPIM).
One successful application of MLS is its integration in the
so-called EFG method [2]. EFG is a viable method which
has very good accuracy and convergence rate and a high res-
olution of localized gradient can be achieved. As the MLS
uses excessive nodes which leads to shape function lacking
in delta function property. Hence its approximation function
does not pass through the data points, which consequently
complicate the imposition of essential boundary conditions.
RPIM based on weak form was then proposed to overcome
this difficulty (see, e.g., [17]). This method uses radial basis
functions (RBFs) augmented with polynomials to interpolate
the data points exactly and the generated shape functions pos-
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Fig. 1 Nodal arrangements and background cells for the cantilever beam when using Gauss integration. (a) Regular and (b) irregular nodal
distribution

Fig. 2 Domain discretization using Voronoi diagram for nodal integration. (a) Regular and (b) irregular nodal distribution

sess the delta function property. The method uses exactly the
same number of interpolation bases as the nodes in support
domain and the selected bases are predetermined before anal-
ysis.

In this paper a mesh-free minimum length method (MLM)
is presented to construct shape functions for a set of scat-
tered nodes. Some polynomial terms combined with modi-
fied RBFs are used to interpolate field nodes. As the number
of interpolation bases (polynomials plus RBFs) is larger than

the sampling nodes in the adopted functional, the minimum
length procedure is employed to determine unknown coeffi-
cients and then the shape functions are obtained. It will be
proved that these shape functions possess the delta function
property. The MLM shape functions are then used to estab-
lish a mesh-free method based on weak form formulation
for 2-D elasticity problems (termed as MLM in short). Both
Gauss integration and stabilized nodal integration are em-
ployed to evaluate the Galerkin weak form. Some numerical
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examples in solids and steady-state heat conduction are ana-
lyzed to investigate the accuracy, convergence rate and sta-
bility of the present method. Several related parameters are
also examined through numerical analysis.

2 Mesh-free minimum length method (MLM)

2.1 Formulation

Similar to RPIM, the method uses the same number of radial
basis functions (RBFs) as the supporting nodes in local sup-
port domain plus some lower order polynomials to interpo-
late the field function. In RPIM extra constraints are imposed
to guarantee unique approximation [7]. Instead, a commonly
used technique in inverse problems, a minimum length proce-
dure, is employed to determine the unknown coefficients for
interpolation bases (see e.g., [12]). The method is described
as follow.

Consider a field variable u(x)that is approximated and
represented by a group of reasonably arbitrarily distributed
nodes xi (i = 1, 2, . . . , N) in the domain � bounded by �.
At any point xQ, a local support domain can be defined and
it is assumed that only n field nodes within the sub-domain
have effect on the field variable. The approximated value uh

is expressed as

uh(x, xQ) = b(x)a (1)

where x = [x y]T for 2-D problems and the unknown
coefficient vector a = [a1 a2 . . . am]T . The basis vector is
constructed with the combination of polynomials and radial
basis functions (RBFs) as

b = [p r] (2)

where p(1×np) = [1 x y x2 xy y2 . . . ] for 2-D case, np

is the number of the polynomial terms. In particular, if np=3,
we have p = [1 x y]. In the vector r(1×n) = [r1 r2 . . . rn], ri

is the chosen RBF evaluated at node xi , i.e., ri = r(xi ), which
will be detailed in Sect. 4. Note also that m = n + np > n.

Letting Eq. (1) pass through the n field nodes in support
domain, one can get

ue = B0a (3)

where ue = [u1 u2 . . . un]T , B0 is a matrix of dimension
n by m.

It is noticed that there are m unknowns in Eq. (1) while
only n (n<m) equations are available in Eq. (3). It is an un-
derdetermined system. To uniquely determine the unknown
coefficients in Eq. (3), a functional � adopted from the min-
imum length procedure can be established as

� = 1

2
aT a + λT (ue − B0a) (4)

The derivatives of � with respect to vectors a and λ lead
to
∂�

∂a
= 0 ⇒ a − BT

0 λ = 0 (5a)

So

a = BT
0 λ (5b)

∂�

∂λ
= 0 ⇒ ue − B0a = 0 (6)

Substituting of Eq. (5b) into (6) and solving vector λ yields

λ = [B0BT
0 ]−1ue (7)

Then substituting vector λ into Eq. (5b), one may obtain

a = BT
0 [B0BT

0 ]−1ue (8)

Substitution of Eq. (8) into Eq. (1) yields

uh = b(x)BT
0 [B0BT

0 ]−1ue = �ue =
n∑

i=1

φiui (9)

where

� = b(x)BT
0 [B0BT

0 ]−1

= [
φ1(x) φ2(x) φ3(x) . . . φn(x)

]

where � is the MLM shape function vector. Its derivatives
with respect to coordinate i (i = x, y) can be easily computed
as

�,i = b(x),iBT
0 [B0BT

0 ]−1 (10)

In practice the moment matrix B0 is generated using linear
or quadratic polynomials together with n RBFs. As n < m,
the matrix [B0BT

0 ] of size n by n is invertible for reasonably
arbitrary nodal distributions.

It is easy to verify that the MLM shape functions pos-
sess Kronecker delta function property. This can be proven
as follows. Using Eq. (8),

B0a = B0(x)BT
0 [B0BT

0 ]−1ue = Iue = ue

Fig. 3 The representative domain of a field node using Voronoi diagram
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Fig. 4 Error distributions in (a) displacement norm and (b) energy norm using different shape parameter q’s

Hence

φi(xj ) = {
b(xj )BT

0 [B0BT
0 ]−1

}
i
=

{
1 (i = j)

0 (i �= j)
(11)

This indicates that the MLM shape functions are exact in-
terpolators. Hence the essential boundary conditions can be
enforced directly as in the conventional FEM.

2.2 Comparison with the RPIM

Both MLM and RPIM construct their shape functions using
RBFs along with some monomial terms and their derived
shape functions have delta properties. RPIM can be estab-
lished from either the direct interpolation concept [17] or the
moving Kriging method [5]. As MLM and RPIM are formu-
lated from different mathematical backgrounds, their shape
functions accordingly differ in expressions.

The RPIM shape functions are given in the form below
(see [10] for details).

� = rT Sa + pT Sb (12)

where

Sb = [PT
mR−1

Q Pm]−1PT
mR−1

Q (13)

Sa = R−1
Q [1 − PmSb] (14)

[RQ] i,j = rj (xi ); (i, j = 1, 2, . . . , n) (15)

[Pm] i,j = pj (xi );
(i = 1, . . . , n; j = 1, . . . , np), p0 = 1 (16)

Comparing the MLM shape functions with those of RPIM,
one can see that the former have a simpler form. Furthermore,
if we examine the work of matrix manipulations, RPIM needs
to determine the inverse of two matrices with sizes (n × n)
and (np × np), respectively, whereas in MLM only the first
inverse is required. In addition, when calculating the shape
functions at one quadrature point, RPIM needs to perform
n2(n+4np +1)+nnp(np +1) times of multiplication while
MLM needs n(n+np)(2n+1) times. Subtraction the second
from the first leads to the conclusion that, if

n > (1 +
√

2)np (17)

or in more detail, if n >7.2 for np = 3 (Linear polynomials)
and n >14.4 for np = 6(Quadratic polynomials), the compu-
tational work for RPIM is larger than for MLM. These con-
ditions are often satisfied in general practice. On the whole,
RPIM is computationally more expensive than MLM. How-
ever, the main drawback of MLM is the loss of linear repro-
duction property as compared to RPIM.

3 Integration of weak form

A 2-D problem in solid mechanics can be described by equi-
librium equation in the domain � bounded by � and � =
�u + �t , �u ∩ �t =Ø. Note that the inertia effect is not con-
sidered here.

σij,j + bi = 0 in � (18)

where σij is the component of stress tensor and bi is the body
force component. Boundary conditions are given as follows.

σijnj = t̄i on �t (19)
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Fig. 5 Deflections of the cantilever beam using different sizes of support domain. (q=1.01, np = 6). (a) 17×5 nodes; (b) 21×9 nodes

ui = ūi on �u (20)

where the superposed bar denotes the prescribed boundary
displacements and ni is the component of unit outward nor-
mal to the domain. Its variational weak form is expressed
as

∫

�

δ(∇su) : σd� −
∫

�

δu · bd� −
∫

�t

δu · t̄d� = 0 (21)

With the application of the derived MLM shape functions,
the discretization of Eq. (21) yields (in matrix form)

Ku = f (22)

3.1 Gauss quadrature (GI)

In order to evaluate the integrals in stiffness matrix, a back-
ground cell structure is required when using Gauss quadra-
ture, which is independent of the field nodes (see Fig. 1).
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Table 1 Errors of displacement using different sizes of support domain

R 1.2 1.5 1.8 2.0 2.5

a) 17×5 regular nodes
Average supporting nodes 4.3 6.3 8.8 10.9 15.6
ed (×10−2) GI 16.57 3.95 1.59 0.425 0.180

NI 47.90 47.90 5.28 5.28 5.25
b) 21×9 regular nodes

R 1.1 1.2 1.5 2.0 2.5
Average supporting nodes 3.6 4.4 6.4 11.6 17.1
ed (×10−2) GI 21.42 8.62 1.67 0.146 0.333

NI 11.77 11.77 11.77 1.42 1.42

The cell can be quadrilateral or triangular. For simplicity,
quadrilateral cell structure is used in the paper. For uniformly
distributed (nx × ny) nodes, (nx − 1) × (ny − 1) rectangu-
lar cells are recommended with nodes located at grid points
exactly. For irregularly scattered nodes, the numbers of cells
in two directions are suggested as

nx = lx

ly

√
N, ny = ly

lx

√
N (23)

where lxand lyare maximum lengths of the domain in x- and
y-direction and N the total node number in the domain.

Within each cell Gaussian quadrature method can be ap-
plied. The number of Gaussian points is determined by the
node number in local support domain. The number of quad-
rature points depends on the number of nodes in a cell. The
method used in EFG method is adopted here [12]

nQ = √
mc + k (24)

where (nQ × nQ) quadrature points are used in each cell and
mc is the number of nodes in a cell. As the number of nodes
covered in local support domain of MLM is normally less
than that of EFG method, from our experience, k=1 is big
enough for sufficient accuracy for general problems when
(8–20) nodes are covered in support domain. However for
problems with localized steep gradients (refer to the follow-
ing heat conduction problem in Sect. 4), even higher order of
quadrature such as k=2 is recommended.

3.2 Stabilized nodal integration (NI)

Based on the distribution of field nodes, the problem domain
can be discretized using Voronoi diagram (see Fig. 2). To
meet the linear exactness of Galerkin approximation, the fol-
lowing integration constraint should be satisfied [8,4]
∫

�

BT
I (x)d� =

∫

�

�T
I (x)d� (25)

A smoothing operation is performed to the gradient of field
function (displacement herein) in order to eliminate the error
in the procedure of direct nodal integration, which is similar
to the strain smoothing method used by [3]

∇uh(xI ) =
∫

�

∇uh(x)�(x − xI )d� (26)

Integration by parts once leads to

∇uh(xI ) =
∫

�

uh(x)n(x)�(x − xI )d�

−
∫

�

uh(x)∇�(x − xI )d� (27)

where � is a smoothing function and the weighted Shepard
function is used as a distribution function, as given by

�(x − xI ) = φ(x − xI )

nI∑
J=1

φ(x − xJ )AJ

(28)

where AI = ∫

�I

d� and �I is the representative domain of

node I (see Fig. 3). For simplicity, a piecewise constant func-
tion of φ is applied here, which is assumed to be unity within
�I and vanish somewhere else. So the above equation can
be rewritten as

�(x − xI ) =
{

1/AI x ∈ �I

0 x /∈ �I

(29)

Substituting of � into Eq. (27), one can get the smoothed
gradient of displacement

∇̃uh(xI ) =
∫

�I

uh(x)n(x)�(x − xI )d�

= 1

AI

∫

�I

uh(x)n(x)d� (30)

where �I is the boundary of the representative domain of
node I. Similarly the smoothed strain can be obtained and
given as

ε̃h(xI ) =
∑

J∈GI

B̃J (xI )dJ (31)

where GI is a set of nodes in the influence domain of node
I or those whose shape function supports cover node I. For
2-D case

B̃J (xI ) =
⎡

⎣
b̃J1(xI ) 0

0 b̃J2(xI )

b̃J2(xI ) b̃J1(xI )

⎤

⎦, b̃J k(xI )

= 1

AI

∫

�I

�J (x)nk(x)d�, (k = 1, 2) (32)

If a two-point trapezoidal rule is used for integration along
each segment of boundary �I

i of �I , the above equation can
be transformed to its algebraic form
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Fig. 6 Comparison of convergence rate in displacement norm among FEM, MLM and RPIM

b̃J k(xI ) =
M∑

i=1

[
�J (xi )n

I
ik

lIi

2
+ �J (xj )n

I
ik

lIi

2

]
(33)

where i and j (= i+1) are two end points of boundary seg-
ment of �I

i , whose length and outward unit normal are lIi
and nI

i , respectively. Similarly, Gauss integration can also be
employed for the boundary integration along each segment.
It can totally eliminate zero-energy mode appearing in some
special cases [19].

It has been proved that the strain smoothing stabilization
can exactly satisfy the integration constraint of Eq. (25) [4].

The numerical procedure for NI using two-point trape-
zoidal rule is briefed as follows.

(1) Form Voronoi diagram for given field nodes and gather
nodal information;

(2) Generate MLM shape functions and record correspond-
ing supporting nodes at each vertex point;

(3) Loop over all the field nodes:

a. Determine the area and outward unit normal of each
side for sub-domain �I ;

b. Compute the B matrix using Eq. (33);
c. Evaluate the stiffness matrix;
d. Assemble the contribution of the current node to form

system matrices and vectors.

(4) Form external loading vector and implement essential
boundary conditions;

(5) Solve the system equations to obtain the nodal displace-
ments;

(6) Evaluate strains and stresses at each node.

4 Numerical examples

4.1 Cantilever beam

A cantilever beam with length L and height D is studied here.
It is subjected to a parabolic traction at the free end as shown
in Fig. 1. The beam is assumed to have a unit thickness so
that plane stress theory is valid here. The analytical solution
is available and can be found in a textbook by Timoshenko
and Goodier [16].

ux = Py

6EI

[
(6L − 3x)x + (2 + v)(y2 − D2

4
)

]

uy = − P

6EI

[
3vy2(L − x) + (4 + 5v)

D2x

4

+(3L − x)x2
]

(34)
where the moment of inertia I of the beam is given by
I = D3/12 (35)
The stresses corresponds to the displacements Eq. (34) are

σx(x, y) = P(L − x)y

I
σy(x, y) = 0

σxy(x, y) = − P

2I
(
D2

4
− y2) (36)

The related parameters are taken as E=3.0 × 107 kPa, v =
0.3, D = 12 m, L= 48 m and P = 1000 N.

In order to study the convergence rates of the three point
interpolation methods, two norms are defined here, i.e., dis-
placement norm and energy norm. The displacement norm
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Fig. 7 Comparison of convergence rate in energy norm between FEM and MLM

Table 2 Errors of displacement and energy using different nodal densities (MLM-GI) (R=2.0, q=1.01)

Node distribution Average supporting node np = 6 np = 3
ee ed ee ed

11×5 10.8 1.45e-4 7.38e-3 2.95e-4 3.78e-2
21×6 11.2 7.49e-5 2.70e-3 1.66e-4 3.09e-2
33×9 11.7 3.63e-5 1.16e-3 9.18e-5 1.30e-2
41×11 11.8 2.70e-5 8.70e-4 7.11e-5 8.39e-3
65×17 12.1 1.68e-5 5.71e-4 4.30e-5 3.36e-3

Table 3 Comparison of computational time between MLM and RPIM (R=2.0, q=1.01)

Node distribution MLM (sec) RPIM (sec)
np = 3(NI) np = 3 (GI) np = 6(GI) np = 3(GI) np = 6(GI)

11×5 1.08 6.33 6.45 4.74 6.38
21×6 2.13 18.38 13.61 18.94 19.77
33×9 10.31 82.02 82.86 74.18 74.74
41×11 19.97 186.13 196.39 180.09 193.78
65×17 185.58 1587.3 1597 – –

uses the relatively errors of displacement at all nodes as fol-
lows

ed =

N∑
i=1

∣∣uNumer
i − uExact

i

∣∣

N∑
i=1

∣∣uExact
i

∣∣
(37)

and the energy norm is defined by

ee = 1

2LD

⎡

⎣
∫

�

(εNumer − εExact )T D(εNumer − eExact )

⎤

⎦
1/2

(38)

4.1.1 Effect of shape parameters

Two commonly used RBFs are listed below for 2-D case, i.e.,
Multiquadrics and Gaussian RBFs.

r(xi ) = [(x − xi)
2 + (y − yi)

2 + Cd2
c ]q (MQ-RBF) (39)

r(xi ) = exp[−α((x − xi)
2

+(y − yi)
2)/d2

c ] (EXP-RBF) (40)

where dc is a characteristic length or average nodal spacing.
Two shape parameters (C and q) appear in MQ-RBF and one
(α) in EXP-RBF, which have great effect on the accuracy of
final results [18]. In this paper only MQ-RBF is explored.
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Fig. 8 Shear stress on x=L/2 using 21×9 regular nodes using (a) using FEM and MLM-GI (R=3.0); (b) using different polynomial terms of
MLM-GI (R=2.0) and (c) MLM-NI

Through numerical testing, it is found that parameter C has
insignificant effect on final results. So we fix C=0 in the fol-
low examples. The new form of MQ is termed accordingly
as modified MQ-RBF.

The effect of q is quite different from that in data or curve
fitting. In the weak-form formulation, local compact support
domain is used to produce banded system equations. Theo-
retical explanation of the effect of parameter q is very diffi-
cult and numerical experiment is often used. 21×9 regularly

distributed nodes are used to discretize the cantilever beam.
20×8 rectangular background cells are used for Gauss inte-
gration and 3×3 quadrature order is applied in each cell. The
value of q is varied from 0.95 to 1.05 and note that 1.0 is never
used since otherwise the MQ-RBF will degenerate into poly-
nomials. The errors in both displacement norm and energy
norm are demonstrated in Fig. 4. It is noticed that, when q
is close to 1.0, more accurate results are obtained. Hence,
if not specified otherwise, q = 1.01 is used in the following
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Fig. 8 (contd.)

examples. Comparing the Gauss integration and nodal inte-
gration, it can be seen that shape parameter is less sensitive
to the final results in the latter scheme.

4.1.2 Size of support domain

The size of support domain, or the number of nodes covered
in support domain, also plays an important role on accuracy
of final results. If too small number of nodes is included,
one may fail to get accurate results even though the problem
domain is discretized by suitable number of nodes. Support
domain can be a rectangle, a circle or an ellipse for uniform
nodal arrangement. An ellipse is used in this study as the
nodal spacing may be different in two directions (see Fig. 1).
The relationship can be defined as

(xq − xi)
2

a2
+ (yq − yi)

2

b2
< R2 (41)

where R is termed as axial parameter; (a, b) are nodal spacings
in two directions. (xq, yq) and (xi, yi) correspond to quadra-
ture point and field node, respectively. (17×5) and (21×9)
regularly spaced nodes are taken for instance to examine the
size of support domain. The centerline deflection of the beam
is plotted in Fig. 5 when parameter R increases from 1.1 to
2.5. Some of the results are also listed in Table 1. It can be
seen that, when supporting nodes are less than 6 using GI,
the results are not accurate. Generally, the larger the number
of nodes covered in support domain, the more accurate the
solutions. Normally, 6–20 supporting nodes are sufficient to
give good solutions. By comparison, when R is lager than
a certain value in NI, e.g. R=1.8 for 17×5 nodes, the error
of displacement is almost constant. To enhance the accuracy,
one can increase the number of field nodes. Accordingly,

R = 2.0–3.0 is often used in the study. For irregular nodal
distribution, a circular support domain may be employed with
radius

rs = Rdc (42)

where dc is a characteristic length that relates to the nodal
spacing near the point in consideration. For 2-D case, it is
defined as

dc =
√

As√
ns − 1

(43)

where As is an estimated area that is covered by the support
domain and ns the number of nodes enclosed in the support
domain ranging from 10 to 30. Similarly, R = 2.0–3.0 leads
to good results.

4.1.3 Comparison of convergence rate and efficiency
among FEM, MLM and RPIM

Four regular nodal patters are employed to examine the con-
vergence rate of the three methods, i.e., 21×6, 33×9, 41×11,
65×17 evenly spaced nodes. Linear and quadratic polyno-
mials (np = 3, 6) are included respectively in the interpola-
tion bases for MLM and RPIM. For comparison, four-node
finite elements with identical node densities are also used
for the analysis. RPIM uses the same nodal density, support
domain size and shape parameters as the MLM. The con-
vergence rates in displacement norm and energy norm are
shown in Figs. 6 and 7, respectively. The quantity h is equiv-
alent to the maximum mesh size in the FEM. It is observed
that the MLM-GI achieves a slightly higher convergence rate
in energy norm but generally the same in displacement norm
when compared to the FEM. When comparing MLM-GI and
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Fig. 9 Nodal distribution in a plate with a central hole and its Voronoi diagram
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Fig. 10 Results of an infinite plate with a central hole subjected a unidirectional tensile load. (a) Displacement u on y=0; (b) Displacement v on
x=0 and (c) Stress σx on x=0

RPIM-GI, one can see that both methods achieve nearly same
rate whereas the latter is of higher accuracy of displacement
than the former when np = 6. Their convergence rates in
energy norm are almost equivalent. Quadratic polynomials
give better results than linear ones while both of them are
more accurate than those obtained by FEM. It is observed that
MLM-NI achieves much higher convergence rate and accu-
racy in energy than both MLM-GI and RPIM-GI as well as

4-node FEM. Examining the errors listed in Table 2, one can
see that the results of MLM-GI using linear polynomials in
displacement norm are one order larger than using quadratic
polynomials, whereas the latter do not entail great compu-
tational costs additionally. For MLM-NI, the added linear
and quadratic polynomials give comparably accuracy in both
displacement and energy. Hence only linear polynomials are
used in MLM-NI if not stated otherwise. The simulation time
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Fig. 10 (contd.)

given in Table 3 shows that the computational cost for both
MLM-GI and RPIM-GI are nearly the same, which testify
the correctness of Eq. (17). In addition, quadratic polyno-
mials included do not increase the cost greatly. On account
of this, quadratic polynomials are recommended in interpo-
lation bases in MLM-GI. When comparing GI and NI, it is
found that NI can significantly reduce the computational time
especially for larger number of field nodes used.

It should be mentioned that when node number covered
in support domain is less than the polynomials used in inter-
polation basis, i.e., n < np PRIM fails to work due to the
singularity of moment matrix whereas MLM can still work
properly. This is one advantage of MLM over RPIM.

From the formulation of MLM, it is seen that the construc-
tion of shape function in this method is more complicated
than 4-node finite elements, which is different from point to
point due to locally changing node pattern and can, in conse-
quence, only be evaluated in the process of simulation. Local
interpolation uses more nodes than FEM. The higher order of
approximation accordingly requires more quadrature points
in one integration cell. Therefore the CPU time required for
MLM is approximately three to six times more than 4-node
FEM.

4.1.4 Regular/Irregular nodal pattern

To investigate the effect of the nodal distribution, 21×9 regu-
lar nodes and 189 irregular nodes are used as shown in Fig. 1.
Figure 8 illustrates the comparison of the shear stress com-
puted analytically and using the present method on the section
x = L/2. For comparison, 20×8 four-node finite elements
are also used for the same problem. Only stresses at Gauss

points are averaged and plotted for simplicity in MLM-GI.
In MLM-NI, the calculated stresses are assumed to belong
to the central point in the representative domain of boundary
nodes. Very good agreement is observed for both regular and
irregular nodal distribution in the application of MLM. Com-
paring the effect of the number of polynomial terms on the
stress distribution in MLM-GI, one can see quadratic poly-
nomials enhance the accuracy. The present results are almost
continuous and post-processing of stresses is not required.

4.2 Infinite plate with a hole

Figure 9 represents a plate with a central circular hole subject
to a unidirectional tensile load of 1.0 N/m at infinity in the x-
direction and Fig. 9b gives the Voronoi diagram in NI. Due
to its symmetry, only the upper right quadrant of the plate is
modeled. Plane strain condition is considered, and E=1.0 ×
103N/m2, v = 0.3. Symmetry conditions are imposed on
the left and bottom edges, and the inner boundary of the hole
is traction free. The exact solution for the stresses is [16]

σx(x, y) = 1 − a2

r2

[
3

2
cos 2θ + cos 4θ

]
+ 3a4

2r4
cos 4θ

σy(x, y) = −a2

r2

[
1

2
cos 2θ − cos 4θ

]
− 3a4

2r4
cos 4θ

σxy(x, y) = −a2

r2

[
1

2
sin 2θ + sin 4θ

]
+ 3a4

2r4
sin 4θ (44)

where (r, θ) are the polar coordinates and θ is measured coun-
terclockwise from the positive x-axis. Traction boundary con-
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Fig. 11 Nodal arrangement for a pressured cylinder and its Voronoi diagram
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Fig. 12 (a) Displacement ur and (b) stresses in the pressured cylinder

ditions are imposed on the right (x=5) and top (y=5) edges
based on the exact solution Eq. (44).

The domain is discretized by 225 nodes and 194 sectorial
background cells are used for Gauss integration. A circular
support domain is used for simplicity. Due to the changing
nodal densities in problem domain, a subroutine is developed
to automatically vary the radius of support domain such that
the number of selected nodes ranges between 12 and 30 in
GI. The displacement ur along y=0 and the stress σx along
x=0 using the present method are plotted in Fig. 10. It can be

seen that the present results coincide well with the analytical
ones. Comparing the GI and NI schemes, one can see that
NI generates more accurate and stable results especially for
stress analysis.

4.3 Pressured thick-walled cylinder

A thick-walled cylinder of internal radius R1 and outer radius
R2is analyzed here, which subjected to internal pressure P.
The outer edge is traction-free. The cylinder is assumed to be
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Fig. 13 A heat conduction problem in a rectangular plate

sufficiently long so that plane strain condition is applicable.
The numerical values used are R1 = 3, R2 = 6, P = 1.0
with material properties E = 1.0 and v = 0.3. The plane
strain Lame solution can be written as [16]

ur = C1r + C2

r

σrr = C3 − C4

r2

σθθ = C3 + C4

r2
(45)

where the constants C1 to C4 depend on the geometry and
boundary conditions. In this problem, they take the values:
C1 = 0.1733, C2 = 15.6, C3 = 0.3333 and C4 = 12.0.
Due to the symmetry, only one quarter of the cross section
is considered and modeled by 99 nodes, as shown in Fig. 11.
A circular support domain is employed with radius R = 1.0
and R = 1.5 respectively. The computed displacements and
stresses are plotted in Fig. 12. It can be seen that both the dis-
placements and the stresses obtained by the present method in
very good agreement with analytical ones. For displacement
of MLM-GI, when R increases from 1.0 to 1.5, the present
results approach analytical ones. It is noticed that the results
of MLM-GI clearly deviate from the exact ones for points
near inner surface. This may be caused by the reason that
insufficient nodes are covered in support domain for quad-
rature points in the region. Once again the MLM-NI yields
much better stresses than MLM-GI even near boundaries.

4.4 High-gradient heat conduction problem

A heat conduction problem is considered here in a rectangular
plate (as shown in Fig. 13) with heat source

b(x, y) = 2s2 sec h2[s(y − 3)] tanh[s(y − 3)] (46)

The boundary conditions are given by

T = − tanh(3s) at y = 0

T = tanh(3s) at y = 6 (47)

∂T

∂x
= 0 at x = −0.25 and x = 0.25

The exact solution of this problem is

T = tanh[s(y − 3)] (48)

As shown in the study by Belytschko et al. [2] this problem
has a very high gradient of temperature near y = 3.0. In Eq.
(46), the quantity s is a free parameter. The bigger the value
of s, the higher the gradient of field T. As the steep gradient
occurs only near the area 2.5 � y � 3.5. A very dense nodal
pattern with (10×40) even nodes is used to discretize this
area. For the other two areas, (10×25) regularly distributed
nodes are used, respectively. For comparison, once again the
four-node finite elements with the same nodal distribution are
applied to analyze this problem. Note that s = 40 is used in the
analysis. In the MLM-GI, linear polynomials are included for
interpolation basis. An elliptical support domain with R =2.0
is used as defined in Eq. (41). Due to the high gradient of
field in consideration, (4×4) Gauss quadrature order is used
in both methods.

Figure 14 illustrates the comparison of temperature be-
tween the exact solution and the numerical solution obtained
by MLM-GI. It is observed that very good agreement is
achieved. The computed gradient T′y by the MLM as shown
in Fig. 15 are much better than those by FEM, especially for
larger s. It should be mentioned that, as only the gradient val-
ues at the quadrature points are plotted for simplicity without
curve fitting, this is responsible for the phenomenon that the
numerical value at the tip is smaller than the exact one.

5 Conclusions

In this work a mesh-free minimum-length method (MLM) is
proposed for solving 2-D solids and heat conduction prob-
lems. This method employs polynomial terms as well as mod-
ified radial basis functions (RBFs) to interpolate field vari-
ables using arbitrary nodal distribution. Minimum length pro-
cedure is used to construct a functional from which the shape
functions are derived. Weak form integration is numerically
conducted using Gauss integration and nodal integration.
Some numerical examples are studied and related parameters
are also examined. From the research the following conclu-
sions can be drawn.

(1) Due to the delta function property of the derived shape
functions, the essential boundary conditions can be en-
forced conveniently as in conventional FEM. In MLM-
GI, quadratic polynomials can improve the accuracy by
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Fig. 14 Comparison of temperature between exact solution and MLM-GI results for the high-gradient problem

one order for energy when compared with linear polyno-
mials.

(2) In the modified MQ-RBFs, the shape parameter q around
1.0 (0.98 < q < 1.03; q �= 1.0) is recommended for good
resolution of final results. MLM is not sensitive to the
shape parameter C in the conventional MQ-RBF and thus
removed from its original form. The selection of shape
parameters is no longer required to consider in the pres-
ent method.

(3) Stabilized nodal integration is used for weak-form inte-
gration. It is found that nodal integration can signifi-
cantly improve the accuracy and stability and compu-
tational time is greatly reduced as compared to Gauss
integration. As the representative domain for each node
is established uniquely using Voronoi diagram, no addi-
tional background structure is required over the entire
problem domain.

(4) The method shows higher accuracy than the four-node
finite elements especially for problems with localized
steep gradients while its convergence rate is also com-
parable with that of FEM. Good results can be obtained
for both primary and secondary field variables.

(5) Local support domain can be circular, elliptical or rectan-
gular. For elliptical support domain, the axial parameter

can be chosen as 2.0 < R < 3.0 such that 10–20 nodes
are covered in sub-domain. Irregularly distributed nodal
distribution performs well and it does not degrade promi-
nently the accuracy of final results. No singularity occurs
for moment matrix in numerical analysis.
In conclusion, MLM achieves equivalent accuracy and
convergence rate as compared to RPIM. It can serve as a
substitute for RPIM to obtain shape function with delta
property. MLM-NI shows better performance in terms of
accuracy and efficiency than MLM-GI.
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